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Cavitating flow about a wedge at incidence 
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SUMMARY 
A mathematical model is constructed for cavitating flow past 

a wedge with sides of equal length but with its axis of symmetry 
placed at an angle to the incident stream. The model involves 
a subsidiary cavity with a re-entrant jet at the vertex. Only the 
case of zero cavitation number is considered. The flow field 
is worked out in some detail for small angles of incidence, and the 
lift, drag and moment coefficients are calculated as far as first-order 
terms in the angle of incidence. It is shown that the effect of the 
rate of loss of momentum in the re-entrant jet on these force 
coefficients is negligible to this order. 

Experimentally, it is shown that the secondary cavity does 
exist under suitable conditions, and the force coefficients 
obtained agree with the theory. 

1. INTRODUCTION 
The problem of two-dimensional steady cavitating flow with zero 

cavitation number past a symmetrical wedge in an infinite stream, neglecting 
external forces, has in the past been solved exactly, using complex variable 
techniques, for the particular case of a non-yawed wedge (see Lamb 1932, 
or Milne-Thomson 1949). 

Milne-Thomson has also derived a solution involving a yawed wedge. 
He found, however, that for the flow pattern considered it is not possible 
to specify arbitrarily the ratio of the lengths of the two wedge faces. This 
ratio is determined as a function of the wedge and yaw angles, and is unity 
only for zero yaw ; so that, in particular, Milne-Thornson’s method fails 
to solve the problem of a symmetric wedge at non-zero yaw. 

To be able to specify the ratio of the lengths of the wedge faces 
independently of the wedge angle and yaw angle, it is necessary to relax 
the conditions determining Milne-Thornson’s problem, and it is clear 
that the non-essential condition imposed is that which requires the vertex 
of the wedge to be a stagnation point. This is borne out by considering the 
special case of a yawed semi-infinite flat plate, whereon the stagnation 
point is not in general in a symmetric position (see Milne-Thomson 1949). 
. It is by discarding this condition that the following solution is found, 

involving a flow pattern which is of a sufficiently novel type to appear tg 
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merit description in some detail. The novel feature of the flow-a subsidiary 
cavity in the lee of the wedge vertex-is shown experimentally to  exist 
under certain conditions. 

A. D. Cox and W. A. Clayden 

2. THE PHYSICAL MODEL OF THE FLOW 

The method of solution used will be that of the complex variable, and 
for this we need to assume potential flow and neglect viscosity. 

It is convenient to adopt the convention that the angle of incidence is 
positive, SO that the ‘lower ’ face of the wedge is inclined to the stream at 
a greater angle than the ‘ upper ’ face. By analogy with the behaviour in 
the case of the flat plate, we should expect the stagnation point to move to 
the lower face of the wedge. 

2 b. 

Figure 2. 

The dividing streamline through this stagnation point will, on the 
downstream side, follow the wedge face until it reaches the rear of the 
wedge and will then become the lower free-streamline of the main or ‘ rear ’ 
cavity. On the upstream side of the stagnation point the dividing streamline 
will reach the vertex of the wedge and would then, in the absence of a 
stagnation point, need to attain an infinite fluid velocity to turn round the 
sharp corner of the wedge. However, owing to the inability of real fluids 
to sustain pressures less than vapour pressure, a rise in velocity above a 
certain finite value, in this case taken to be the main stream velocity, is 
impossible. We shall assume in our model that a cavity will form, bounded 
by a free-streamline which is the smooth continuation of the dividing 
streamline. Besides the rear cavity, therefore, we have a ‘ bubble ’ cavity 
formed on the upper face of the wedge ; this certainly exists under suitable 
conditions, as is shown by the photograph (figure 1, plate 1) taken in the 
A.R.D.E. Cavitation Tunnel. 

The free-streamline springing from the vertex must either rejoin the 
upper face of the wedge or else continue to infinity. ’rhe first case might 
conceivably occur as illustrated in figure 2. If, however, the re-attachment 
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were effected tangentially, as in figure 2 (a),  the free-streamline would 
contain a point of inflection, which is impossible because the pressure 
gradient, and therefore the streamline curvature, must always be directed 
towards the cavity. If the re-attachment were other than tangential, as 
in figure 2 (b) ,  it would involve a stagnation point, which again is impossible 
on a free-streamline. 

If, on the other hand, the free-streamline continues to infinity down- 
stream, so that the upper face of the wedge is included in the cavity, 
as in figure 2(c), then the flow is simply that past a yawed flat plate. 
This flow pattern will indeed occur under suitable conditions, which 
may easily be defined from the exact general solution of this type of flow 
(see Milne-Thomson 1949). 

When the dimensions and orientation of the wedge preclude the 
possibility of 'yawed flat plate' flow, we are left with the possibility that 
the flow continues to infinity in some other direction. This apparently 
unreal configuration, involving a double-sheeted flow pattern, is similar 
to the familiar re-entrant jet models occurring in the solutions obtained by 
Kreisel (1946) and Shiffman (1949) for non-yawed wedges a t  non-zero 
cavitation number. 

While Gilbarg & Rock (1946) have shown by numerical methods that 
drag forces are remarkably insensitive to the assumptions made as to the 
flow pattern at the rear of the cavity, at least when this region of the flow is 
far removed from the wetted nose of the body, we cannot quote this as 
sufficient justification for the model now proposed, since the re-entrant 
jet is here postulated as forming on the face of the wedge itself. The 
justification will rest partly on the degree of agreement achieved with 
experimental results, and partly on the mathematical demonstration that 
the rate of loss of momentum in the re-entrant jet is of smaller order of 
magnitude than the drag and lift forces on the wedge, at least for small 
angles of yaw. 

We now consider the assumed mathematical model in detail. Referring 
to figure 3, we have a symmetrical wedge DCD' of semi-angle /3 in an 
infinite stream which makes an angle cc with the axis of symmetry of the 
wedge. As is customary, the uniform stream is considered to be due to 
a source system at A, the point at infinity (Al, A,, etc. all refer to  the unique 
point at infinity in this plane and are labelled differently for the purpose of 
identification of individual streamlines). 

The streamline A,B divides at the stagnation point B on the lower 
wedge face CD'. A, BD' becomes the lower bounding free-streamline D'A, 
of the main cavity and A, BC breaks away smoothly from the vertex C to  
form the bounding free-streamline CQE of the subsidiary cavity. The 
free-streamline CQE and part of the flow to its left turn almost completely 
round and flow to infinity as a separate jet, bounded on one side by the 
extension of the wedge face DC and on the other side by the free-streamline 
CQE. The point at infinity on this jet is denoted by E and is quite distinct 
from A, the point at infinity in the main stream. Since the streamlines 

F.M. 2 R  
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in the jet cut across the streamlines of the main flow pattern, it is necessary 
to visualize the flow as occurring on a double-sheeted Riemann surface, 
one sheet of which carries the main flow pattern, while the jet crosses on to 
the second sheet. The cut dividing one sheet from the other is somewhat, 
arbitrary, but it can be said to have the form GQPA, shown in figure 3. 
Since part of the flow to the left of A, B flows upstream and the rest flows 
downstream, forming the upper wall of the main cavity, there must be a 
stagnation point H on the upper face CD of the wedge. The dividing 
streamline A, H will, on the downstream side, become the upper bounding 
free-streamline DA, of the main cavity. 

WEDGE FACES - -  
STREAM LINES - Y - x  

FREE STEAMLINE 
RIEMANN CUT Ic I 5 .. :: 

- - - - - - I - . - . - . - 

Figure 3. Assumed model of the flow. 

Thus, of the fluid flowing from A, that lying to the right of A, B returns 
to A, and that to the left of A, B and to the right of A, H flows to E and 
is ' lost ', while that to the left of A, H returns to A. 

3. THE SOLUTION OF THE PROBLEM 

We use the standard technique of obtaining conformal transformations 
between suitable complex variables to determine the flow pattern and all 
physical quantities. 

For the physical plane as represented in figure 3,  we use the variable 
z = x+iy ,  where x and y are rectangular Cartesian coordinates parallel 
and perpendicular respectively to the plane of symmetry of the wedge, the 
direction of increasing x being downstream. Next, we define the complex 
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velocity potential w = + + i+, where + is the velocity potential and 1+5 the 
stream function. The velocity vector (u,v) is given by 

u = - = -  a+ a+ a+ a* u = - =  - - a  

ax ayy aY ax 
By a suitable choice of scale in the w-plane, in respect to the as yet 
undetermined length scale, we arrange that 

where (u,,v,) is the velocity vector of the flow at infinity. 

where 42 = 242 + ‘u, and 0 = tan-lvlu. 
The w-plane is illustrated in figure 4. All the streamlines, since they are 

by definition lines of constant +, become lines parallel to the +-axis. The 
pair of streamlines HDA, H E  and the pair BCE, BD’A should each actually 
be represented by a single straight line but are shown separated for 
convenience. 

u2,+v212,= 1, 
Then 

dwldz = u - iv = qeie ,  

E 0 =------ - b t -_ - - -  3 
D‘ A3 

Figure 4. The complex velocity potential. 

The next variable is the logarithmic hodograph variable Q defined by 

Q = log(dw/dz) = log 4 - i0. 

This variable is plotted in figures 5 (u) and ( 6 ) .  The free-streamlines D’AD 
and CQE are lines of constant speed q,.this constant speed being equal to 
that at infinity so that, by our choice of scale, we have q = 1 (i.e. logq = 0): 
on the free-streamlines. Thus in the Q-plane they become portions of the 
imaginary axis. Since the wedge faces CB, BD’ and DH, HE are lines of 
constant 8, they become lines parallel to the real Q-axis with a discontinuity 
of amount 7~ in the imaginary part of Q at H and B, where Re(Q) = - co. 

It is found on tracing the other streamlines that the Q-plane is doubly- 
covered. To  overcome this we make a cut in the R-plane from the point R, 
where dQ/dz vanishes, to the point at infinity in the Q-plane in a negative 
direction, and then consider the Q-plane as a Riemann surface with two 
sheets cross-joined along this line. 

Then the streamlines are as shown in figures 5(u) and (b),  where, for 
convenience, we have separated the two Riemann sheets. The streamlines. 
themselves show how the four half-planes are joined. The images of all 
streamlines between the dividing streamlines A,B and A,H of figure 5 
lie between A X ,  and AX,  in figure 5 (u) ; after crossing the cut they remain. 
on the second sheet, eventually terminating at E in figure 5 (b). 

2 R 2  
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In order to obtain the requisite conformal transformations between 
these variables, we define an auxiliary variable T by requiring that the 
streamlines DAD', D'BC, CQE, EHD become the sides of the rectangle 

8 4 C B  

(a) ( b )  
Figure 5. The logarithmic hodograph. 

-43 -1- --+__--+I !-k - - - -. - - .- - - 
Ib )  - - - - - - -Dl  B C  E H D  A 

Figure 6. (u) .r-plane, (b) t-plane. 

formed by the four points T = _+ K, _+ K+iK', the orientation of the 
lines being as shown in figure 6(a ) .  We also suppose the points H ,  B, A 
$0 be represented by 

T* = iK'+a, - K  < a  < K. 
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In this plane the streamlines are as shown in figure 6(a) ,  the behaviour 
near A being precisely as in figure 5 (a)  apart from a change of orientation. 

We now find by inspection the conformal transformations which 
transform the lines DAD', D'BC, CE, EHD and AB, A H  into their images 
in the w- and Q-planes. From this we shall find a parametric relation 
between w and dwldx, and hence the problem is solved. 

The Q-r transformation 
The functions to be used in this and the following transformation, a? 

has been foreshadowed by choice of the r-plane, are the Jacobian elliptic 
functions, for the definitions and properties of which reference may be 
made to Neville (1951), Jahnke & Emde (1948), Milne-Thomson (1950), 
and Whittaker & Watson (1940). Although Neville's notation is certainly 
the more elegant, we have used that of Whittaker & Watson as being the 
more familiar. 

The function dQ/dr must have a simple pole at rH and rB and must also, 
be purely imaginary all along the boundary rectangle in the r-plane. I t  
must also be finite and non-zero at ra. The transformation 

T, sn r T2 sn 7 
- + + iN, 

dS2 
dr snT-snrH snr-sn rB 
_ -  

where N is real and T,, T ,  are purely imaginary, satisfies all these require- 
ments since sn7 is real all along the rectangle in the r-plane. The function 
dlaldr can be shown to have only one zero inside the rectangle and this 
must obviously be at rR, where R is the branch point illustrated in figure 5. 

To ensure that the transformation gives the correct scales as well as 
directions we have to impose further conditions. The first two are that Q 
must have a discontinuity of in at rH and rB, and these are easily seen to 
lead to 

TI = cnrHdsra, and T2 = cnrBdsrn. 

The other conditions are 
Q, = -@, QD = ij3, Qc = -i(n-/3), Q, = i(n-j3), la, = -ia, 
and these must be applied to the integrated form of equation (1). Integrating, 
we get 
0 = n ( ~ ,  rB-iK')+rI(r, r B - i K ' ) -  

x k2 sny cny dny sn2 u 
du, 1 - k2 sn2y sn2 u 

where 

as defined by Whittaker & Watson (1940). 
in (2) is zero due to the skew symmetry of the conditions at C and E. 

The first four conditions imply that 

The constant of integration 

N K  = (n. - 6 )  + i [  IT( K ,  T H  - iK') + IT( K,  rB - iK' )] , 
and /?K' = $n(h + b ) .  
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‘The fifth condition gives 
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- ia = Il(a, T= - iK’) + I’I(a, T~ - iK’) + ia{Z‘(h) + Z’(b)) - 

- tan-l - 
dc a 

k sc’b - i tan-l - { dca { (k’)2 sn a sn’h cn’h 
+itan-l - 

cn a dn a dn’h { ( k’)2 sn a sn‘b cn‘b 
-+itan-l - 

cn a dn a dn’b 

where the prime indicates that the co-modulus k’ replaces the modulus k, 
.and Z(x) is the Jacobian zeta function. 

The W--7 transformation 

auxiliary variable t defined by t = sn7. 
rectangle in the  plane, the t-plane is as in figure 6(b). 

the following conditions for dwldt : 

This transformation is more easily found by considering a further 
Since s n ~  is real all along the 

Then, using the Schwartz-Christoffel theorem, we see that we require 

(i) It should have a simple zero at t,, tB. 
(ii) It should have a simple pole at t, and a triple pole at t,. 

Thus we get 

or, in terms of 7, 

dw 
dr ( m T -  l ) ( s n ~ - s n ~ ~ ) ~  

P cn T dn 7(sn 7 - sn TH)(sn 7 - sn 7.) _ -  - ( 5 )  

since snT, = s n K  = 1. 

The constant P determines the length scale in the problem, and it is in 
relation to this that we choose the scale in the w-plane so that qm = 1 .  

Equation ( 5 )  may be integrated to give w as a function of T.  Also, since 
!2 = log(dw/dx), equations (2) and (5) together yield an expression for 
dz1d-r which can again be integrated to give z as a function of r. Thus we 
can determine w and x parametrically in terms of T ,  and hence find the 
flow pattern. From these we can determine all the physical quantities 
required. 

4. DETERMINATION OF PARAMETERS 

There are four parameters a, b, h and k in the problem. Equations (3) 
.and (4) show that specifying the wedge semi-angle and the angle of yaw will 
provide two equations. The other two conditions to be imposed are the 
following : 

(i) The lengths of the sides of the wedge must be in a predetermined 
ratio. In  particular we shall consider a symmetrical wedge. 
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(ii) In general C will not lie on the continuation of DH. Ensuring that 
it does provides the fourth condition and makes the solution 
determinate. 

Conditions (i) and (ii) can be expressed in the mathematical form 

DD’ = 0+2ilCD’jsinP, (6) 
where DD’ and CD‘ are conveniently calculated by integrating dzldr 
along the sides of the rectangle in the .r-plane. The real and imaginary 
parts of this equation, together with equations (3) and (4), provide the 
four equations necessary for determining the four parameters of the 
problem. 

In general these quantities will have to be determined numerically, but 
in certain cases, and in particular when R is small, the calculations can be 
carried out analytically as far as first-order terms. Since it can be shown 
that small k combined with certain other assumptions corresponds to small 
angles of yaw, a situation of particular interest, we shall consider this case 
in more detail. 

5. THE LIMITING CASE OF SMALL ANGLES OF YAW: THE FLOW PATTERN IN THE 

As the yaw tends to zero, it is reasonable to suppose that the flow pattern 
studied here will tend to the familiar symmetrical flow pattern. In other 
words, the effect .of the existence of the secondary cavity on the main cavity 
should tend to zero as the yaw tends to zero. Similarly the secondary cavity 
must become so small that its detailed geometry is unaffected by the main 
cavity. Thus the two free-streamlines must tend to become independent 
of one another, or, interpreting this in the 7-plane, K’/K + co as the yaw 
tends to zero. From the theory of Jacobian elliptic functions, this implies 
that k tends to zero. 

LARGE 

Now, writing 281.r = e, where 0 < E < 1, equation (3) becomes 

h + b  = EK’, 
-and, since h, b 2 0, 

h < EK’, b < E K .  

Writing u = iK’ - T ,  we transform the two fundamental equations (1) 
.and ( 5 )  into the form 

cn UH ds UH cn UB ds UB 
- - iN, 

dQ 
do 1 -nsu,snu 1 -nsuBsnu 
- =  - 

.and 

(9) 
dw 
du 

PR sn3 uA cn u dn a( 1 - nsua sn a)(l - ns a, sn a) _ -  - 
(1 + k sn a)(sn a, - sn 

When k --f 0, and provided alies on or near DAD, the following relations 
hold : 

sn a = sin u[l + O(k2)], cn a = cos a[ 1 + O(k2)], dn u = 1 + O(k2). 
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Moreover, it is easily shown from (7) that 

ns a, = O(K"), ns = O(k"), 
cn o, ds uB = - i + 0 ( K z E ) ,  cn a, ds uB = - i + O(KZE), 

where l > n = l - ~ > O .  

Equations (8) and (9) therefore reduce to the form 

dQ/du = IM-ipsina+O(kY), 

and dw s cos u 
[ 1 -t p sin u + O(K;')], da = (sin u + sin a13 

where ,u = .-nsoH-nsuB = O(kn), 

and M ,  S, y are constants, y being chosen as the smaller of the two 
quantities 1 or 2n. 

Integrating (lo), and applying the conditions at D and D', we obtain 

rR = ciieU[l -ipcosu+ O(~Y)]. (12) 
Since exp( - Q) = dx/dw, we find that 

dz cos ff _ -  -s 
do ( s i n ~ + s i n a ) ~  

cifu[ 1 - ipe" + O(ky)]. 

Hence 

the path of integration being the straight line from -n/2 to n/2, indented 
on the positive side by a small semi-circle described about u = -a .  

From the condition (6), expressing the equality of the wedge faces, it 
follows that Re(DD') = 0. Applying this condition to (13), we find that 

u = p / t ( ~ )  = O(k"), 

the derivation of this formula, and the definition of f ( ~ ) ,  being given in 
Appendix I. The function t ( ~ )  varies monotonically from 4/(4 - T) = 4.660 
at c = 0 to 5.000 at E = 1 (as shown in table 1, $6). 

When this condition is satisfied we have 
IDD'I = Ssin(&n)F(E)[l+ O(ky)] ,  

where F(E)  = 1 + E + + E ~ [ # (  1 - ~ / 4 )  - +(1/2 - ~/4)], #(x)  being the digamma 
function (+(x)  = (d /dx)r (x) )  . In particular, F(0)  = 1 and F(1) = 2+77/2. 

In order to determine the forces on the wedge, let us consider a circle 
in the u-plane, given by o = - a + reiv (r  small). In the x-plane this corre- 
sponds to a large contour completely surrounding the wedge and enclosing 
most of the flow, as shown in figure 7. 

Then, equating the forces acting on this contour to the rate of change 
of momentum inside it, we have 

( X ,  Y )  = p I (n.g)qds- pnds+R,  

where (X, Y )  is the force per unit length acting on the wedge, n is the 
unit vector along the outward normal to the contour, s measures arc length 

I 
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along the contour, p is the density, p is the pressure, q is the velocity vector 
(u, o), and R is the contribution of the fluid in the re-entrant jet. 

Referring to figure 7, we know that on QSP, q = 0, p = p , ;  and on 
PRQ, q is known, p = p ,  + &p( 1 - 4,). Hence 

( X ,  Y )  = p J (n. q)qds-  &p J (1 - q2)n ds+ R, 
A A 

where A is the semicircle cr = -u++ei'i, 0 < q < T. 

R S 

Figure 7. 

Since the left-hand side of this equation is independent of r, so also is 
the right-hand side. Thus, on letting r tend to zero, we find 

X = +~~.rrSp + R, + O(U'), 
and 

is given by 

Y = 3aTps[  - t + 42 t  - 1) - € 2 t  + €31 + R, + 0(a2), 

where R, and R, are the components of R. 
From (12) we find, on putting cr = - a ,  that the angle of incidence a 

Hence the drag force D and the lift force L per unit length are given by 

D = X i -  O(a2) = &e2.rrpS+ R, + O(a2), 
and 

a = a{€ - t ]  + O(a'). 

L =  Y-Xa+O(a2)  = $ a n p S [ - t + ~ ( 2 t -  1)]+R2-aR,+O(a2). 

In a similar manner we can find the pitching moment M per unit length, 
measured about the mid-point of the base of the wedge, and reckoned as 
positive for a destabilizing moment. Using the formula 

M = J p ( x  dx +y dy) - p J (vx - uy)(u dx - z, dy), 

we find that 
M = - & ~ T u S ~ P ( E )  + R, + O(a2) (14) 
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where R, represents the term due to the re-entrant jet, and the function 
p ( e )  is explained in Appendix 111. 

p(0) = 3/(8-2~) ,  

In particular we have 
andp(1) = -3/2. 

The terms R,, R, and R,, representing the effect of the re-entrant jet, 
must be small if our mathematical model is to be physically realistic. In 
the next section we shall prove that they do, in fact, become negligible 
compared with the other terms in D, L and M as u tends to zero. 

6. THE FLOW PATTERN IN THE NEIGHBOURHOOD OF THE VERTEX AND ITS 

EFFECT ON THE FORCES ACTING ON THE WEDGE 

The analysis of the preceding section was effected without making any 
assumptions regarding the behaviour of b and h as k tends to zero, apart 
from the restriction given in equation (7). It is now necessary to examine 
their behaviour in more detail, and it is clear that three possibilities arise: 

(i) b and h both tend to infinity ; 
(ii) b remains finite ; or 
(iii) h remains finite. 
The correct choice is governed by the fact that we have yet to satisfy 

the condition imposed by the imaginary part of equation (6), representing 
the fact that C must be collinear with D and H .  (The real part of this 
equation has already been satisfied by the condition p = a t (e )  in the previous 
section.) 

Since the analysis differs in detail for the three different possibilities, 
we shall reproduce here only that corresponding to case (iii) above, since, 
as we shall show, this is the case that enables equation (6) to be satisfied. 

In this case it follows from (3) that b/K'+ E ,  and hence 

Then on or near CE it can be shown, from (l), that 
ns TB N nc rB = O(k'), and dn T~ = 1 + O(kZn). 

+ iz+ O(kE), 
COS Tn _ -  - di2 

d7 sin T - sin TH 

where 2 is a real constant. 
Integrating, and applying the conditions at C and E, we find 

sin +(T - T ~ )  

COS $(T + 761) 
e-Q = - i  eci7"[I + O(k')]. 

Similarly, from ( 5 ) ,  

[1 + O(kE)J. 
dw 4 E S k 1 + n ~ ~ ~ ~ ( s i n ~  - sin-rH) 
- =  + 
dr 2 ( s i n ~ -  1) 

Hence 
Ski+n 1 +sin7 

[I +COS(T+TH)][~ +O(kE)]. (15) e-'bkr _ -  - +i4' - dz 
dr 2 cos 7 

Now the imaginary part of equation (6), implying the collinearity of C,  
D and H ,  may be replaced by the following condition : 

(16) 
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where E is the point at infinity on the free-streamline of the re-entrant jet, 
and g is the width of the re-entrant jet at infinity. 

Butg may be readily evaluated by studying the behaviour of equation (15) 
in the neighbourhood of r = K = n/2 + O(k2) ; thus 

g = +SK1+" n[l + sin~,][l+ O(k')]. (17) 
Substituting in (15), our condition becomes 

T[coshh - 1][1+ O(K')] = I' (1 + cos t)(sin t)-l(sinnt - 
0 

- cosh h cos t sin nt - sinh h sin t cos nt) dt, (18) 
where we have written r = 5712 - t. 

In Appendix I1 this equation is solved explicitly and then, using 
,equation (15), the dimensions of the subsidiary bubble are calculated. 
However, as we shall now show, the effect of the value of h on the forces 
is negligible. 

Equation (17) gives the value of g and it is obvious without actual 
evaluation that the values of R, and R, will both be equal to multiples of g, 
the multipliers being of order unity as ci tends to  zero. However, g itself 
is of order ctl+lln, so that we have 

D = 4 c2n-pS + O(a2), 

L = $a7rpS[ - t + E(2t - l)] + O(ci2), 

(19) 

(20) 

(21) &j'= - - a  2 p T S 2 p ( E )  + O(ci2). 

We now define a drag coefficient and lift and pitching moment slope 
coefficients, using the dynamic head as the reference pressure and the 
combined length of the wedge faces c = IDD'lcosec/3 as the reference 
length. An asterisk will be used to distinguish these coefficients from those 
which would be obtained by taking IDD'I itself as the reference length. 
The advantage in taking c as reference length is that all these coefficients 
tend to finite limits as E tends to zero. 

Using an obvious notation, we obtain 

It  is interesting to compare these formulae with known limiting values 
as a tends to zero and as ,3 tends to zero or ~ 1 2 ,  bearing in mind, however, 
that the foregoing analysis is not strictly valid when /3 equals zero or ~ r / 2  

For the case tc equals zero (19') agrees with the formula given by Perry 
(1952), while (20) and (21) give zero values for L and M a s  would be expected. 

When E tends to unity, corresponding to a flat plate nearly perpendicular 
to the stream, (20') agrees with the value given by Milne-Thomson (1949), 
and (21') with that given by Lamb (1932). 
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When E tends to zero, corresponding to a flat plate nearly parallel to the 
stream, we find that (20’) gives a value r and (21’) a value 3 r / 8 .  These do 
not agree with the classical values for cavitating flat plates, but this is to be 
expected since even in the limiting case both sides of the wedge are wetted. 
A more reasonable comparison is with a flat plate at incidence in fully 
wetted flow, with circulation chosen using the Joukowsky hypothesis of 
a finite velocity at the trailing edge. In  this case Ramsey (1947) gives the 
value r for [aCT/am], = and 3 r / 8  for [aCz/am], = o ,  so that again agreement 
is secured with classical theory. 

and they 
are plotted in figures 8 and 9 respectively. 

Table 1 gives values of C:, [aC:/am],=, and [aC;/aa], = 

E 

0 
0.2 
0.4 
0.6 
0-8 
1 .o 

t ( E )  

4.660 
4.721 
4.785 
4.853 
4-924 
5 .ooo 

G 

0 
0.102 
0.325 
0.571 
0.770 
0.880 

a == 0 

3.142 
1.71 1 
0.629 

-0.138 
-0.628 
-0.880 

1.178 
0-553 
0.1 i7 

-0.053 
--0*110 
-0.092 

I I 
Table 1 .  

I 0 

Figure 8. Modified lift slope coefficient as a function of f3. 

7, EXPERIMENTAL METHOD 

As a result of the foregoing theoretical study of cavitating flow about- 
a wedge at incidence, experimental data were needed to verify the assumption. 
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made concerning the existence of the subsidiary cavity formed on the upper 
face of the wedge, and also to measure the hydrodynamic forces acting on 
the wedge. These data were obtained in the A.R.D.E. cavitation tunnel 
(see Clayden 1954). 

- 0 . S  

Figure 9. Modified moment slope coefficient as a function of 8. 

This tunnel is a re-circulating type with a rectangular 9 x 7 in. 
free jet working section with fixed vertical side walls and free top and 
bottom surfaces. The working section speed is nominally constant at 
40 ft./sec, and the cavitation number is varied by varying the pressure. 
Very low cavitation numbers (-0.01) may be obtained in this manner. 
The  basic instrumentation consists of the following : 

(1) a horizontal beam manometer to measure the pressure across the 
contraction nozzle, which is used as a Venturi meter ; 

(2) a tilting dead weight manometer to measure the difference between 
the ambient and cavity pressure ; 

(3) a tilting dead weight manometer to measure the ambient pressure 
in the working section. This instrument is also used to operate a 
servo-mechanism to control the tunnel pressure in the range 
1 atmosphere to 10 mm of mercury; 

(4) a thermocouple thermometer ; and 
(5) a mechanical three-moment balance. 

(The first four instruments give continuous recordings.) 
The 30" semi-angle wedge shown in figure 1 (plate 1) was originally 

used to obtain design data for struts and model supports. It completely 
spanned the tunnel, but was attached only to the rear boundary wall of the 
working section. It was used to obtain photographs of the flow pattern, 
in preference to the family of wedges used to obtain force data, because it 
permitted an uninterrupted view. 
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The size of the models used to obtain the force data were as follows: 
for the wedge semi-angle fi = 15", the width of the base of the wedge was 
0.5 in.; for /3 = 30", 45", 60" and 90", the width of the base was 0.3 in. 
To obtain the force measurements, the wedges were pivoted on the front 
boundary of the free jet and were attached to the three-moment balance 
by a universal joint (figure 10). The three-moment balance was mounted 
on the back of the working section. (A more detailed description of the 
experimental rig was given by Clayden (1957).) A pressure tap was fitted 
in the boundary wall of the working section to measure the cavity pressure 
directly, 
pressure, 

since the cavity pressure is normally higher than the vapour 
due to a small quantity of air leaking through from the balance. 

bACK 8 O U N O A R Y  

T R A N S P A R E N T  

M O U N T I N G  FOR PIVOT-' 

Figure 10. Test rig. Dimensions in inches. 

For a typical series of tests the cavitation number was held constant 
whilst the balance was rotated .from - 15" to + 15" with the horizontal, 
readings of the three moments being taken at intervals of 3". Since the 
angle the free jet makes with the model is not precisely known, the position 
of zero incidence was determined as the position at which the measured 
lift force changed sign. 

Although the tunnel is capable of achieving a cavitation number as low 
as 0.01, the lower limit in these tests was determined by the length of the 
cavity, which for the lowest cavitation numbers extended throughout the 
length of the working section. 

8. RESULTS 
Observations and photographs of the flow about a yawed wedge indicated 

that the mathematical model, illustrated in figure 3, closely resembled a 
time average of the actual physical flow (figure 1, plate 1). The subsidiary 
cavity, however, oscillated considerably with a high frequency (a similar 
cyclic process has been observed and studied by Knapp (1956) for flow 
along a cylinder with a cavitating head). As the angle of yaw of the wedge 
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is increased so the subsidiary cavity becomes larger until it finally breaks away 
leaving the leeward face completely unwetted. The angle at which this occurs 
has been studied by Clayden (1957) for a family of wedges of varying vertex 
angles. The force measurements given in this paper are for small angles of 
incidence with the leeward face at least partially wetted (figure 3). - 

B - 
15" 

- 
30" 

- 
45" 

- 
60" 

- 
90" 

- 

(r 

0.067 
0.096 
0.119 
0.170 
0.230 

0.059 
0.073 
0.112 
0.134 
0.183 
0-206 

0.081 
0.116 
0.149 
0-180 
0.260 

0.116 
0.122 
0.164 
0.210 
0.268 

0-104 
0-130 
0.145 
0.180 
0-220 

CDU 

0.291 
0.300 
0.296 
0.345 
0.361 

0.517 
0.523 
0.536 
0.548 
0.590 
0.608 

0.681 
0.709 
0.727 
0.755 
0.794 

0.843 
0.864 
0.890 
0.885 
0.942 

0.945 
0.974 
0.991 
1 a025 
1 -056 

0.00742 

- 0.000305 

-0.000342 

- 0.00032 

0.128 
0.126 
0.124 
0.130 
0.141 

0.0423 
0.0389 
0.0436 
0.0435 
0.0438 
0.0431 

0.0105 
0.0097 
0.0098 
0.0088 
0.0097 

- 0~00501 
- 0.00523 
- 0.005 17 
-0.00578 
- 0.00488 

- 0.0001 70 - 0.01 71 
-0'0174 
-0.0170 
-0.0171 
-0.0168 

0.157 
0.163 
0.159 
0.163 
0.172 

0.0182 
0.0172 
0.0192 
0.0198 
0.0198 
0.0188 

0.00180 
0~00150 
0.00212 
0*00180 
0.00242 

- 0.001 85 
- 0.00214 
- 0.00248 
-0.00302 
- 0.00240 

- 0.00214 
- 0.001 66 
-0.00148 
-0.00165 
-0.0023 1 

Table 2. 

The force measurements obtained from the three-moment balance were 
analysed to give CD, C, and C,, the drag, lift and moment coefficients 
respectively. These results were fitted by the method of least squares to 
give the following relations for each combination of vertex angle and 
cavitation number : 

C, = (aC,/aa)a, C, = (aC,,/aa)a, 
CD = CDO( 1 + da2) (d constant for a given vertex angle), 

where 

The results obtained for aC,/aa, dC,/du, C,, and dare tabulated in table 2. 
CL = L/&p& W, C D  = D/+p& W, C M  = M/$p& W2,  C D 0  = C D  for u = 0. 
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These results are plotted in figures 11, 1 2  and 13. The values of C,, are 
compared with theoretical values given by Perry (1952) in figure 11.  In 
order to compare the experimental values of the lift slope coefficient aC,/aa, 

A. D. Cox and W. A. Clayden 

Figure 11. Measured drag coefficient as a function of a. 

-8.13' 

-8-41' 

L 6 *  to' 

D' 

Figure 12. Measured lift slope coefficient as a function of u. 

with the theory developed in this paper, the results are extrapolated to give 
@C,/.'CL) for (T = 0. For values of f i  = 90°, 60" and 45", there does not 
appear to be any dependence on cavitation number and accordingly the 
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results are averaged. For /3 = 30" and 15", however, there is a significant 
increase of aC,/au with the cavitation number u, and a least squares fit 
is used to obtain (aC,/aa), =(,. The results for the moment coefficient are 
all fitted with a least squares fit to  give (aC,/aa), = ,). The values of 
,(aC;/au), = and (aCE/au), ~ are compared with theory in figures 8 and 9. 
'These results are tabulated in table 3. 

15" 

30" 

45" 

Figure 13. Measured moment slope coefficient as a function of u. 

0.1 16 +0*093u 0*154+0.0850 1 -72 0.582 

0*0398+0*0192u 0~0174+0*01120 1-14 0.248 

0.0097 0.001 3 3 + 0.003 80 0.392 0-038 

60" 

90" 

-0.0052 -(0.00165 +0*00300) -0.258 -0.071 
- 

-0.0171 -(0.00148 +0.00230) - 0.98 - 0.085 

Table 3. 

9. DISCUSSION OF RESULTS 

The drag results for zero incidence plotted in figure 11 show good 
agreement with theory. No theory is presently available for the dependence 
of the drag on the angle of incidence except for the case of a flat plate at 
zero cavitation number, when for a flat plate almost normal to the stream 

F.M. 2s 
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the drag coefficient may be expressed as C, = I?,,,( 1 - 0.000238~~~) compared 
with an experimental value of C, = C,, (1 - 0.000171~~~) for tc in the range 

Since the lift coefficient of a flat plate nearly normal to the stream may 
be expressed as C,tanu (neglecting skin friction), and as C D  behaves as 
1 + u, it would seem reasonable to suppose that the lift coefficient would 
behave in a similar manner. However, the experimental results do not 
show this trend, and the reason for this discrepancy is not yet apparent. 
The extrapolated values of the lift slope coefficient have been plotted in 
figure 8 for comparison with theory when it will be seen that agreement is  
fair, part of the difference between theory and experiment being accounted 
for by the fact that insufficient results were obtained to achieve great accuracy 
in the extrapolated values. 

The values of the moment slope coefficient plotted in figure 9 show 
good agreement with theory. In particular, the negative moment for f l  
greater than 45" is confirmed. 

0-15". 

10. CONCLUSIONS 
The analysis, for small angles of yaw, of the model described in $2, 

has been shown to lead to a drag coefficient which differs only by second- 
order terms in the yaw from that given by the classical solution for a non- 
yawed wedge, and to lift and moment coefficients which have not previously 
been calculated, except for a flat plate, where agreement is again secured. 

The experiments demonstrated the existence of a subsidiary cavity at 
the vertex which appeared to be of a cyclic nature, alternately filling with 
water, breaking away from the vertex, and reforming again. However, the 
steady state model described will give a first approximation to the time 
average of the forces, the quantities that were measured in the experiments. 

The experiments could not be undertaken at zero cavitation number, 
but the extrapolated value of the lift slope and moment slope coefficients. 
show reasonable agreement with theory developed in this paper. Good 
agreement between theory and experiment for the drag coefficient at zero 
incidence is also secured and experiments confirm the theoretical prediction 
that the drag for small angles of incidence differs only by small second-order 
terms in the angle of incidence from the drag at zero incidence. 

Since the predictions of this theory are so well in accord with experiment, 
the theory has since been extended to cover the case of non-zero cavitation 
number (Cox 1957). 

The authors wish to express their thanks to Mr A. H. Armstrong for 
his guidance and assistance and to Miss K. M. Stocks and her staff for 
carrying out the numerical work. 

Reproduced with the permission of the 
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(Crown copyright reserved. 
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APPENDIX I 
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The evaluation of the integral I occurring in equation (13) 

is of the same order of magnitude as a, we find that 
Expanding in powers of a by Taylor’s theorem, and assuming that p 

I = isin(+)[l +~++${$(1 -&)-$($-&))I+ 
+[-3aLl+pL,+3aL,+pL,] +O(a2), 

where +(x) = (d/dx)log r(4, 
L, = (y2 cos u cos eu s i r 4  u do, 

L, = y2 cos u sin( 1 - E)U s i r 3  u du, 

-=I2 

- $2 

L, = €( 1 - +/6, 
L, = (1 - €)2T/2. 

L, = - COS(&r) - a( 1 - €)2[12-, - 41, 
By integrating L, twice by parts, we find that 

where I, = r” sin &(sin 4-l do, 
-ni2 

= - cos($m)[G(n) - G( - n)], 
with G(n) = &[$($-&)-$(g-$n)]. 
Thus we see that 

L, = -$(1 - E ) ~ T - c o s ( ~ E T ) [ ~ - E + ( ~  -E)’G(E)]. 

Similarly, integrating L, twice by parts, we find that 

so that 

Thus, on applying condition (6), we find that 

L, = -~COS(-~ET)+QEL,-~E(l -€)[IE-12-E], 

L, = E( 1 - E ’ ) T / ~  - $ COS( $ E T ) [ ~  - 2 - E( 1 - €‘)>(€)I. 

where 
p = at(€) ,  

2-~2--~(1--~2)G(c) 
t ( E )  = 

2--E + (1 --E)2G( €)  
* 

This result is consistent with our original assumption that p and a are 
of the same order of magnitude. 

APPENDIX I1 
(a )  The calculation o f h  = h(n) 

We have, from equation (18), 
r[coshh- 11 = J,(n)-coshhJ2(n)-sinhhJ,(n)l (11.1) 

where 
= 1 +cost “ l + c o s t  
,, sint 

sinnt dt, ./,(n) = j - J,(n) = j ~ sin nt cos t dt, 
sint 

and = 1 +cost 
sint 

cos nt sin t dt. 

2 5 2  
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The substitution t = 2p leads immediately to 

.in the notation of Appendix I, and hence 

A. D. Cox and W. A. Clayden 

Jdn) = 8[12,+1+ 1278-119 

J2(n) +J3(n) = J d n  + 1) = +[1Tzn+3 + L+J, 
Jz(n) -J,(n) = Jl(n - 1) = +$zn-l + IZn4. 

Solving equation (11.1) for eh, we find the values given in table 4. 

We have, from equation (15), on writing 22G2Sk1+nZ= ze-'P and 
(b )  The dimensions of the subsidiary cavity 

I = 7r12-t, 

1 *ooooo 
1.19825 
1.38439 
1.54252 
1.65503 
1.7071 1 

1 + cos t eint [l -cos(t-ih)]. 
dZ 
dt sin t 
- = - -  

0 - 2.000 
0.343 - 1.925 
0.693 - 1 a767 
1.004 1-526 - 
1.221 1.296 - 
1 -298 1 .lo6 - 

If we write Z = X + i Y ,  then X is the variable along the top face of the 

Then the maximum value Y,  of Y is the dimension of the subsidiary 
wedge and Y the variable perpendicular to it. 

cavity perpendicular to the top face of the wedge, and is given by 

[sin nt ( 1  - cos t cosh h) - cos nt sin t sinh h] dt, 
sint 

Y,  = - 
where t, is the value of t where the expression in square brackets vanishes. 

The variable X has, for n > $, two turning points Xl and X ,  and the 
dimension of the cavity along the top wedge face is IX, -X,i ; while, for 
n < Q, there is one turning point X3, the dimension of the cavity then 
being X,. It is seen that .Xl, X,, and -Y3 are given by 

XI, x,, A', = - [cosnt (1 -cost coshh) + sinnt sint sinhh] dt, 

the appropriate value of t being taken as the upper limit. 
Numerically we find the values in table 4. i 

1 *o 

APPENDIX I11 
'The function p ( e )  occurring in equation (14) is defined by 

P(.> = PI(.) + t(EIPZ(E), 
where 

pl(e) = - 56/24 - e3/4 - e5/6 + 3e2 d3(e) + E( 1 - c2)a3(e) 

p , ( e )  = 1/24+e/6-3c2/4+e3/2-e2a3(1-e)+(l  - ~ ) ~ a ~ ( e ) ,  
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cos U [  cos hu - 1 + $ha sina a] 
wherein 

0 
du I -742 sin3 u 

a3(h) = ++ 
and 

0 cos u[sin hu - h sinu - +A{ 1 - h2}sin3 u] 
da. 

sin4 u 
d3(h) = h / 3 +  1 

-n!2 

Computed values of as(<), a3(l - 6)  and d3(c) are given in table 5. 

a d 4  

0.3333 
0.3386 
0.3537 
0-3764 
0.4034 
0.4299 

637 

ad1 - 4 

0.4299 
0.4034 
0.3764 
0.3537 
0-3386 
0.3333 

E 

0.0 
0.2 
0-4 
0.6 
0.8 
1 .o 

0~0000 
0.0544 
0.1 122 
0.1766 
0-2498 
0.3333 

Table 5 .  
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